Numerical simulation of sediment-associated water quality processes for a Mississippi delta lake
نویسندگان
چکیده
Three major sediment-associated processes were presented to describe the effects of sediment on the water quality processes, including the effect of sediment on the light intensity for the growth of phytoplankton (PHYTO), the adsorption–desorption of nutrients by sediment and the release of nutrients from the bed sediment layer. A formula was generated from field measurements to calculate the light attenuation coefficient by considering the effects of concentrations of chlorophyll and suspended sediment (SS). The concentrations of adsorbed and dissolved nutrients because of adsorption–desorption were calculated using two formulas that were derived based on the Langmuir Equation. The release rates of nutrients from the bed sediment were calculated by considering the effects of the concentration gradient across the water-sediment interface, pH, temperature and dissolved oxygen (DO) concentration. Model algorithms describing the adsorption and desorption of nutrients from sediment particles as well as the release of nutrients from bed sediment were tested using experimental data. These sediment-associated water quality processes were included in a three-dimensional (3D) water quality model, CCHE3D WQ, developed by the National Center for Computational Hydroscience and Engineering (NCCHE), to simulate the concentrations of PHYTO and nutrients in a shallow Mississippi Delta lake with special emphasis on sediment-related processes. The simulated concentration of PHYTO (as chlorophyll) and nutrients were generally in good agreement with field observations. This study shows that there are strong interactions between sediment-associated processes and water quality constituents. Copyright 2009 John Wiley & Sons, Ltd.
منابع مشابه
Three-dimensional numerical simulation of water quality and sediment-associated processes with application to a Mississippi Delta lake.
A three-dimensional water quality model was developed for simulating temporal and spatial variations of phytoplankton, nutrients, and dissolved oxygen in freshwater bodies. Effects of suspended and bed sediment on the water quality processes were simulated. A formula was generated from field measurements to calculate the light attenuation coefficient by considering the effects of suspended sedi...
متن کاملAnnualized Agricultural Non - Point Source model application for Mississippi Delta Beasley Lake watershed conservation practices assessment
The Annualized Agricultural Non-Point Source (AnnAGNPS) model has been developed to quantify watershed response to agricultural management practices. The objective of this study was to identify critical areas where conservation practices could be implemented and to predict their impact on Beasley Lake water quality in the Mississippi Delta using AnnAGNPS. Model evaluation was first performed by...
متن کاملNumerical Simulation of Sediment Related Processes in Water Quality Model
Sediment is a major nonpoint-source pollutant, and the exchange of materials between water and sediment is an important component of the lake eutrophication process. Suspended sediment increases water surface reflectivity and light attenuation in the water column. Nutrients can be absorbed to sediment particles and desorb from sediment to the water. In addition, nutrients can also be released f...
متن کاملCombined effects of best management practices on water quality in oxbow lakes from agricultural watersheds
Water quality conditions in three oxbow lakes were examined before and after best management practices (BMPs) implementation within the Mississippi Delta. Experimental design called for the development of structural and cultural treatments to reduce sediment and associated pollutants entering watershed oxbow lakes. Three watersheds were selected and developed with different levels of BMPs. Chan...
متن کاملPhosphorus losses from agricultural watersheds in the Mississippi Delta.
Phosphorus (P) loss from agricultural fields is of environmental concern because of its potential impact on water quality in streams and lakes. The Mississippi Delta has long been known for its fish productivity and recreational value, but high levels of P in fresh water can lead to algal blooms that have many detrimental effects on natural ecosystems. Algal blooms interfere with recreational a...
متن کامل